skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singh, Maneet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Face sketch to digital image matching is an important challenge of face recognition that involves matching across different domains. Current research efforts have primarily focused on extracting domain invariant representations or learning a mapping from one domain to the other. In this research, we propose a novel transform learning based approach termed as DeepTransformer, which learns a transformation and mapping function between the features of two domains. The proposed formulation is independent of the input information and can be applied with any existing learned or hand-crafted feature. Since the mapping function is directional in nature, we propose two variants of DeepTransformer: (i) semi-coupled and (ii) symmetricallycoupled deep transform learning. This research also uses a novel IIIT-D Composite Sketch with Age (CSA) variations database which contains sketch images of 150 subjects along with age-separated digital photos. The performance of the proposed models is evaluated on a novel application of sketch-to-sketch matching, along with sketch-to-digital photo matching. Experimental results demonstrate the robustness of the proposed models in comparison to existing state-of-the-art sketch matching algorithms and a commercial face recognition system. 
    more » « less
  2. Soft biometric modalities have shown their utility in different applications including reducing the search space significantly. This leads to improved recognition performance, reduced computation time, and faster processing of test samples. Some common soft biometric modalities are ethnicity, gender, age, hair color, iris color, presence of facial hair or moles, and markers. This research focuses on performing ethnicity and gender classification on iris images. We present a novel supervised autoencoder based approach, Deep Class-Encoder, which uses class labels to learn discriminative representation for the given sample by mapping the learned feature vector to its label. The proposed model is evaluated on two datasets each for ethnicity and gender classification. The results obtained using the proposed Deep Class-Encoder demonstrate its effectiveness in comparison to existing approaches and state-of-the-art methods. 
    more » « less
  3. Forensic application of automatically matching skull with face images is an important research area linking biometrics with practical applications in forensics. It is an opportunity for biometrics and face recognition researchers to help the law enforcement and forensic experts in giving an identity to unidentified human skulls. It is an extremely challenging problem which is further exacerbated due to lack of any publicly available database related to this problem. This is the first research in this direction with a twofold contribution: (i) introducing the first of its kind skullface image pair database, IdentifyMe, and (ii) presenting a preliminary approach using the proposed semi-supervised formulation of transform learning. The experimental results and comparison with existing algorithms showcase the challenging nature of the problem. We assert that the availability of the database will inspire researchers to build sophisticated skull-to-face matching algorithms. 
    more » « less
  4. This paper focuses on decoding the process of face verification in the human brain using fMRI responses. 2400 fMRI responses are collected from different participants while they perform face verification on genuine and imposter stimuli face pairs. The first part of the paper analyzes the responses covering both cognitive and fMRI neuro-imaging results. With an average verification accuracy of 64.79% by human participants, the results of the cognitive analysis depict that the performance of female participants is significantly higher than the male participants with respect to imposter pairs. The results of the neuroimaging analysis identifies regions of the brain such as the left fusiform gyrus, caudate nucleus, and superior frontal gyrus that are activated when participants perform face verification tasks. The second part of the paper proposes a novel two-level fMRI dictionary learning approach to predict if the stimuli observed is genuine or imposter using the brain activation data for selected regions. A comparative analysis with existing machine learning techniques illustrates that the proposed approach yields at least 4.5% higher classification accuracy than other algorithms. It is envisioned that the result of this study is the first step in designing brain-inspired automatic face verification algorithms. 
    more » « less